On the Beilinson-Hodge conjecture for $H^2$ and rational varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hodge Conjecture for General Prym Varieties

We work over C, the field of complex numbers. The Prym variety of a double cover C → D of a smooth connected projective curve D by a smooth connected curve C is defined (see [7]) as the identity component of the kernel of the norm homomorphism N : J(C) → J(D) between the Jacobians of the curves. This is an abelian variety polarised by the restriction of the canonical polarisation on J(C); we de...

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

Some Remarks on the Hodge Conjecture for Abelian Varieties

Let X be a smooth complex projective variety of dimension g. A Hodge class of degree 2d on X is, by definition, an element of H(X,Q)∩H(X). The cohomology class of an algebraic subvariety of codimension d of X is a Hodge class of degree 2d. The classical Hodge conjecture states that any Hodge class on X is algebraic, i.e., a Q-linear combination of classes of algebraic subvarieties of X. Lefsche...

متن کامل

A counterexample to the Hodge conjecture for Kähler varieties

H(X,C) = ⊕p+q=kH (X). A class α ∈ H(X,Q) is said to be a rational Hodge class if its image in H(X,C) belongs to H(X). As is well known, the classes which are Poincaré dual to irreducible algebraic subvarieties of codimension p of X are degree 2p Hodge classes. The Hodge conjecture asserts that any rational Hodge class is a combination with rational coefficients of such classes. In the case of a...

متن کامل

An Inductive Approach to the Hodge Conjecture for Abelian Varieties

Let X be a smooth complex projective variety of dimension g. A Hodge class of degree 2d on X is, by definition, an element of H(X,Q)∩H(X). The cohomology class of an algebraic subvariety of codimension d of X is a Hodge class of degree 2d. The original Hodge conjecture states that any Hodge class on X is algebraic, i.e., a Q-linear combination of classes of algebraic subvarieties of X. Lefschet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2012

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2012.v19.n1.a12